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WAVE ADIABATIC CURVES FOR MEDIA WITH ARBITRARY STATE EQUATION* 

A.D. SIDORENKO 

Proofs are given of the assertions in /l/, on the 

proved of the solutions of the Kiemann problem on 

discontinuity. 

basis of which the uniqueness is 

the disintegration of an arbitrary 

1. Fundamental relations. We consider the system of Hugoniot conditions 

E - &I = I:2 k’ T PO) (vo - v), (u -- h? = (p - p$ (u,-u), D2 = Cp - p,,) I (u. - v) (1.1) 

We assume the fulfillment of the general requirements of thermodynamics /2/ 

do = --pdu + Tds (1.2) 
a+ 

m> 0, 
35 

as!/ ‘0, _%?L -(g+o 

The inequalities in (1.2) can be written as 

ap i av < 0, I' I&> 0, -(T / r,) ap / au ,> (@ I as)' (1.3) 

A wave adiabatic curve is a continuous direct curve in the space of variables (u,s,p), consist- 

ing of admissible segments of the Hugoniot adiabatic curve centered at the point (G,,,Q,,~,), of 

the Poisson adiabatic curves and of the enveloping Hugoniot adiabatic curves. The admissible 

segments are chosen by starting off from the requirement that the discontinuities be stable. 
On the set of points of the Hugoniot adiabatic curves occurring in the wave adiabatic we 

require the fulfillment of the inequalities 

(p - ps) (u,, - L') < ~cJ, v .:< v,, (1.4) 

ap I as ;; - 2T i (v - uo), L’ > ug (1.5) 

2. General properties of curves rjrand K. By x, and npxe denote coordinate planes 

of the variables v,s and v,p. In these planes we denote a Hugoniot adiabatic curve Hby H, 

andH,,a Poisson adiabatic curve P by F, and P,, the curves R by R, and R,. and the wave 

adiabatic curve Why W, and W,. 

Theorem 1. The points of H,c W, are not singular. 

Proof. Consider the function 

f (U, s) = e - Eo - l:z (P + PO) @o - u) 

If a point is singular, then 8flav -- 0 and aj/as = 0, i.e., 

-(3p / au) (I;0 - v) - (p - po) = 0, T - v2 (ap / as) (ug - 7)) = 0 (2.11 

Having substituted these equalities into the last condition in (1.31, we obtain an inequality 

contradicting (1.4) when u <Q . When v > u0 the second equality in (2.1) contradicts (1.5). 

we write out the following relations: 

(2X / (U” - v) - ap / as) as + (-i)p I au - (p - po) i (u. ~ v)) flu = n 

8~ i h.1 = (P - po) / b - ug) (4, ds I au = 0 (b). dP I dv = (P - pun i (L> - vO) (c) 

apias=ZT!(vr~)(d), duiak=O(e), dp/ds=2TI(co-v)(f), 

-aP 1 &J - (P - PO) 1 (~0 - u) > 0, ap I 8s - 2T I (u. - u) < 0, dv i ds .=L 0 (a), 

- a:, 1 afJ ~ (P - PO) / (WC, - u) >, 0, ap I rls ~- 2x i (vg - L!) > 0, au ! d.s > 0 (B), 

-@ / au - (P - ~~1 I (co - 4 =c 0, ap / as - 2T / (v. - U) c 0, rlv I h ;> 0 (?), 

- ape - (p - po)/(u, - u) <; 0. +-2Tl(uo - v)> 0, dvlds <: (l(6) 

(2.21 

First of all, by a differentiation and a substitution of the thermodynamics relations, we can 
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achieve that equality (2.2) is a consequence of (1.1). F'urther, the following logical rela- 

tions are obvious: 

(2.2) A7 (d)+ ((a) c-3 (b) M (c)), (2.2) /\7 (a) + (cd; e, (4 + (fb (2.2) ==+ (4 v (B) \/ (I9 v m 

We partition n, into the regions '&,a~, &,% such that in each of these regions there are 
fulfilled, respectively, the first two inequalities of systems (~),(~),(~7),(~). We denote the 

boundaries of these regions by ra,rg,TIY, l76, respectively. 

Lemma 1. When v&u0 
(u,s)@ % (v.s)@ r, I? ry 

holds for the points (u,s)EHs. 

ProoE. If (z., s) E Q, or (2). st E rp n ry, then at this point we have 

- ap i $1: - (p -- po) I (Co - V) < o and 8pias--2Tt(u,-v)),0 

We obtain a contradiction with (1.4) after these relations are substituted into the last con- 
dition in (1.3). 

Theorem 2. Inequality (1.4) is sufficient for d(u - u~)~/&> 0. in regions 52% QP. 

Proof. From the second and third relations in (1.1) we have (u--z@ =D'(D~ - v)% Dif- 
ferentiating this equality, we have 

d (u - u,)" i ds = (dLP / ds) (v,, - v)" - 2 (v, - v) WdvJds 

From the third relation in (1.1) follows 

dD2 I ds = (p - po) / (vi, -- v)” dv / ds + (8p J au) (ug - v) du i da- + (ap 1 as) (u,, - v) 

Substituting (2.2) into this equality, we obtain dDz/ds= 2Tlfvo -v)“. Prom (1.1)‘ (2,2) and 
the equalities obtained we have 

d (U - Z@ f d9 = (-ap I av - (p - po) Yap I as + 

(P - PO) / (U. - V)) ix? / (-aP / 8U - (p - PO) / (U. - U)) 

Allowing fur (1.31, we can write 

-3~ i dn - (P - pO) r-lap I as + (p - po) i tuo - q > 
c,T+ f(ap i as)2 - (p - pof c,-lap i as -j- ~~~-1 x 

(P - PO / (vo - 4) 

For the discriminant A of the quadratictrinomialwe have 

A = D*c,+ [(p - po) / (v, - v) - 4cJ1 
In view of (1.41, A < 0; therefore, the right-hand side in the last equality is positivein 
Q,, s20, which proves the theorem. 

Let the quantity uO = G be a variable. Then relations (1.11 define a one-parameterfamily 
of Hugoniot adiabatic curves. Functions of 2; and SO are designated by an overbar. We require 
that the relations 

(dti)2 = -dj?dC, D2 = --dp I di; (2.3) 

be fulfilled on P (when s = SO). The system of equalities (1.1) (with co = ?) and (2.3) de- 
fines the curves R. 

Theorem 3. The points of R,C w, are nonsingular when v # 2:. 

Proof. Consider the functions 

f (V, s, 6) = E -- E - 'i, (p + j) (i’ - u), (p (u, s, 1:) 1: p - fi - (s’ (v - i;) 

For them we write out the Jacobian5 

a (f, ii) / a (v, q = p” (1: - V) f-4, tap i 37.9) (5 - V) - If, (p - p)) (2.4) 
a (7, qi) i a (s, u) = p”,(ii - V) (T - vz fap i 83) (ii - v)) 

Inviewof(1.4)and(1.5) the Jacobians donotvanish simultaneouslywhenup~,whichproves thetheorem_ 

Lemma 2. The curves R, are enveloping families of shock adiabatic curves. 
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Proof. Having differentiated the first equality in (1.1) with u,,= E, we obtain 

&. _I_ ':z (p t p) do - Uz (0 - 1') dp = dFT i_ '1, (p + @) di; + 'i, (B - a) lfp 

We can convince ourselves that this equality's right-hand side equals zero; therefore, 2Tds - 
(p - j) du - (a - u) dp = 0. Hence from R, we have 

(2T / (i; -c.) - ap / as) ds + (-ap / au - (p - B) I (B - 0)) du = 0, u + u (2.5) 

Comparing (2.2) and (2.5), we see that the lemma is valid; this yields the possibility of car- 

rying all the fundamental differential properties of the adiabatic curve Hovertothe curves 

R, as long as the differential relations with first differentials are analogous. 

3. General properties of wave adiabatic curves. We take p as a parameter onthe 
wave adiabatic curve I+'. At first we consider W when v< ~'0. Let @p / au2 > 0 at point(v0, so). 

In a neighborhood of (UO,SO) the adiabatic curve H,: Q,. Two cases are possible as the pres- 

sure increases further: 

1) H s c Q,, 2) H, c C&. 
The segment of H,, satisfying the first condition, should be regarded as inadmissible (non- 

physical) since the requirement of stability of discontinuities is violated on it, as we see 

from inequalities (y). It is evident that in a neighborhood of the boundary ra !-I ry, by con- 

tinuity, s>- SO, i.e., the requirement of stability of discontinuities is a more stringent con- 

straint than s> SO. Equalities (41 (NY (4 are fulfilled on the boundary rcL[.jrY, whence it 

follows that H, and P, have a common tangent, viz., a ray drawn from the initial point (uO,pO). 

From (2.2), on ra r! rV we obtain 

fls Il dun = (a*p : atq i (2T i (II” - U) - ap i as) 
d”p i dun = (2T I (u. - u)) (amp I au”) (2T 1 (vg - u) - ap I as) 

n > 2 (under the condition i3n-1plt3v n-1 = 0, n # 2). Hence we see that H, and P, have a like 

convexity on ra r] rv . This makes it possible to continue Hfrom the boundary ra [i rY inthe 

direction of the growth of p of the adiabatic curve P. The continuation is possible up to a 

point of inflection at which akp /au" = O(k = 2,...,2n), a”‘*lp /aumtl#O. When v = c, from (2.4) 
we have 

akcp/atik=o (k=1,...,212) 
amiqjj,jp~+l = 2n&t~+ljj,dfp+l f 0 

and hence V = a (u,s) exists in a neighborhood of this point. Having substituted into (2.5), 

we obtain the differential equation for R,. Since 2T- (ap i as)@ - u)# 0 in the neighborhood 

of point v = V, it is nonsingular for R,. From this point there can issue a curve R which 

too can have nonphysical segments replaced by Poisson adiabatic curves and by new curves R’. 
The curve R, intersects H,,at the point !&. pa) (Fig.1) . 

P 

Fig.1 Fig.2 Fig.3 

Indeed, Ed - e, = 'I, (p3 + pl) (ox - us), cl - e. = 1/z (pl +- po) (1.” - aI). The points (Q, pl) and (+, p3) lie on a 

ray drawn from (vO, po) and, therefore, (A3 - pl)/ (va - u,j = (pl - po)! (u, - co). After this equality has 

been substituted into the sum of the two preceding, we obtain e3 - E" == I/, (p3 + pJ (Q - I.?), i.e. , 
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In the second 

boundary I'b 11 r,,; 

<O, the equality 

o<; therefore, 

case, on the strength of Lemma 1, H, cannot go from Qginto 52, through the 

therefore, once again H,goes from Qointo Q,. In region 51, we have d&s 

dv/& = 0 is fulfilled on the boundary ra n r~, while in 8, we have du/& 

H, and H, turn when passing through the boundary (Fig.2). . I .a I 7 
Differentiating the second equality in (1.1) with respect to v, we obtain d(u - uO)* I au = 

(~0 - v) (dp / dv - (p - pO) I (vO - v)), whence dp i dv > D2 in Pi$, but since dD2ids>. 0, then in this 

region p increases strictly monotonically together with v, s and 02. 

Let us consider the wave adiabatic curve Wwhen U> uO. In this case a second constraint 

is imposed, namely, (1.5); therefore, one of the distinctive properties is the absenceofturn- 

ing points since at them 3p iik = 2T /(vO -v), i.e., all admissible segments H, c PB. The re- 

maining properties can be established by analogy with the case v < v0. 

Theorem 4. The wave adiabatic curve Sexists and is unique. 

Proof. First of all we note that we are examining sufficiently smooth functionsand can 

therefore exclude the possibility that an infinite number of Poisson adiabatic curves, occur- 

ring in W, exist in a bounded region. The existence of wfollows at once from Theorems land 

3 and from the properties considered above. To prove the uniqueness it is necessary to show 

that H does not intersect P and the curves R when vE(v,,v,) (Fig.1). The 

ried out in the plane a~. 

1) Let us show that Hp does not intersect Pp. Assume the contrary: 

sect at a point B (Fig.3). Then we have 

as- E,,= SOBCE 

.,-~JPd”&ikD, E* - co = SOADE 

PC 

SOBCE < SAFCD + SOADE 

discussions are car- 

Let Hp and Pp inter- 

(hereandfurther Sdenotes the area of the corresponding figure). Adding the last two equalit- 

ies, we obtain a contradiction with the inequality. 

(2) Let Ho intersect Rp at a point C (Fig.4). Then 

we have 

cc - q, = SOCDK 

tC -E= = SBCDE, 

E*--q,=SOAEK 

SOCDK < SBCDE + SA^BEF + SOAFK 

U tionwiththeinequality. 
Adding the last three equalities, we obtain a contradic- 

D E F x u Theuniqueness of Wfollows from 
Theorems land 3,the argumentspresented, andthe analogous 

Fig.4 arguments when v>va. 
Wave adiabatic curves have the following properties, 

LUllUla 3. Thewave adiabatic curve always has a breakatthepoint (vQ, p3) (Fig.1) when ds+O. 

Proof. Indeed 

ds / dr = (-ap / av - (p - j) / @ - z)) / (2T / (i; - 0) - aP / ds), P < Ps 

ds / dv = (-ap / au - (p - PO) / (ug - 4) / (2T / (10 - V) - aP 1 as), P >, pa 

At point (L.~, ps) the numerators are equal, but the denominators are always unequal, i.e. ds/dn, 

Irmh-0 + ds 1 dv IP=h+o when ds#O. 

Lemma 4. Turning points a (Fig.2) do not exist for media in which E = @((v)(P(s),E~> 0. 

Proof. From (1.1) we have p=2e!(vo-u)-22e,/(v,--)-pp,. Equalities (a). (e), (f) are 
fulfilled at point a. Having made the substitution aptas =2T/(vo-v), we obtain pT-eapIas= 
--2&,T / (vu - V) - paT. Hence pT-eap/as<O. If e= ~,(v)c~(s), then pT= &BP/as, which contradicts the 
last inequality. 
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'Theorem 5. On the wave adiabatic Wthe entropy s increases monotonically with the in- 
crease of pressure when v <VO and with the decrease of pressure when v >. UQ. 

Proof. dPJds> 0 holds everywhere on H,lZ W, and R,c W,. Now by examining the 
disposition of H,and R, relative to the rays drawn from the point (uO,pO) and (6, j?) in regions 
a,, 528, a,, fin when v\<uO, we can be convinced that dsldp _>O, while, by definition, cls/dp 
= 0 on P,CW,. Analogously for v :- vu. 

4. Uniqueness theorem. Theorem 6. The Riemann problem on the disintegration of 
an arbitrary discontinuity has a unique solution. 

Proof. For the proof it is sufficient that the velocity u increase strictly monotonic- 
ally with the growth of pressure p. Then in the plane (II, p) two wave adiabatic curves with 
initial states equal to the states on the initial discontinuity intersect at one point, and 
in this way a physical state is uniquely defined on the contact discontinuity 131. The mono- 
tonic increase of the velocity when v <us follows from Theorem 2 and the above-presented pro- 
perties of wave adiabatic curves, while when u -‘-uO it follows from the fact that the wave 
adiabatic curves do not have turning points, i.e., segments where the velocity's monotonicity 
could be violated. 

5. Notes on inequalities (1.4), (1.5). As we see from the text, all the proofs 
of the fundamental properties of wave adiabatic curves are based on inequalities (1.4) and 
(1.5). For any medium defined by the general thermodynamic relations (1.2) we can always find 
a sufficiently small finite region containing (~0,s O,pO), where (1.4) and (1.5) are obviouslyful- 
filled; therefore, they are additional constraints only when considering wave adiabaticcurves 
inthe large. A wide class of media exists, for which it is easy to prove the fulfillment of 
(1.4) and (1.5) on wave adiabatic curves in the large. Indeed, in view of (1.1) inequality 
(1.4) is equivalent to the folIowing: E < 2c,T(p;po)/(p -ppo) +-Q. Hence 

1 

c %lvs;aonst 0 <2c*T (P i- P,)/(P - PO) i-F0 (5.1) 

ii 

where u>u~,z~ is the medium's specific volume when T=O,p =0 (vi;= 0 for ideal media). From 
(5.1) we see the fulfillment of (1.4) for media in which the heat capacity is constantorgsows 
with the growth of temperature. In addition, (5.1) also resolves the decrease of heat capac- 
ity cU with growth of temperature, but sufficiently slowly. The complete domain in which (5.11 
is fulfilled is obtained by investigating the dependence of c, on the temperature. 

Inequality (1.5) is always fulfilled for media in which Bp!Js>O. Let us discuss inequal- 
ity (1.4) further. We rewrite the last condition in (1.3) as 

- Tc,-‘@1/3u = a. @pfBs)’ (5.2) 

where the coefficient CL> 2. In the region fa,, >under the condition --STi(o, - v) < apids, from 
(5.2) we obtain an inequality equivalent to (1.4) 

(P - PO)(CO - a) < 4sc,T (5.3) 

We note that @/as> 2Tl(v, - Y) in QB and that it is not possible to derive (5.3) from (5.2) i. n 

this region. Other equivalent inequalities for (1.4) are 3<4c,T when ug= 0 and $ Tds ( 4r,T, 

where the integration is carriedout over a rectangular contour with sides u-50~ P = PCI and the 
corresponding segments of the straight lines passing through (v, P). 
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